
Learning from Guided Play: A Scheduled Hierarchical Approach for 
Improving Exploration in Adversarial Imitation Learning

Problem: Adversarial Imitation Learning (AIL) does not 
explicitly enforce good exploration.
Question: Can we use simple human-selected 
auxiliary tasks in a scheduled hierarchical model to 
improve performance?

Motivation
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Multitask Manipulation Environment Results

Approach

LfGP vs. DAC: Episode at 1M steps

● LfGP outperforms both multitask baselines and 
single-task AIL (DAC) by enforcing exploration.

● Performs comparably to single-task BC, but allows 
reusable expert data and models.

Conclusion

Code
github.com/utiasSTARS/lfgp 

Blog post
papers.starslab.ca/lfgp

Expert Data Summary

Transfer Performance

● Single-task methods 
have 6-7x more 
main task data than 
multitask methods.

● Multitask methods 
reuse expert data 
between main tasks.

● Multitask methods 
can also transfer 
existing agents to 
new main tasks.

Open Gripper, Close Gripper, Stack, etc. — bold: reused

Off-policy AIL LfGP

Our model combines off-policy AIL with a learned scheduler and 
a hierarchy of policies, discriminators, and Q-functions.
Play: Attempt multiple tasks in an environment.
Guided play:
1. Expert plays in environment, guided by uniform sampler.
2. Agent plays in environment, guided by expert data, as 

opposed to reward functions.
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A single episode of LfGP and DAC at 1M steps while learning Stack.
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