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Problem: Example-based control (EBC) (RL from
examples) is very inefficient for learning even
moderately complex tasks.

Question: Can we use auxiliary task examples in a
hierarchical model to improve exploration?
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VPACE

Auxiliary Control from Examples (ACE):

o Off-policy learning with multitask policy and
multitask Q-function (discriminator optional).

o Implementation of SAC-X"¢ framework for IRL,
where scheduler selects between individual
policies during training.
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o All policies and Q-functions learn from all data.

Highly exploratory policies have unstable Q values
due to bootstrapping. We use over-success-level
value penalization with ACE (VPACE):

mm — Rmm/(l ’7) I7ITlaX L~ [Vﬁ(s*)]
Lren(@Q) = AEg[ (max(Q(s,a) — Qna, 0))°
+ (max(Qpi, — Q(s,a),0))]

[1] M. Riedmiller et al., “Learning by Playing Solving Sparse Reward Tasks from Scratch,”
ICML’18

[2] T. Ablett, B. Chan, and J. Kelly, “Learning From Guided Play: Improving Exploration for
Adversarial Imitation Learning With Simple Auxiliary Tasks,” RAL'23
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VPACE strongly outperforms baselines, and learns
tasks in 1-3 hours from scratch on a real robot.
Preliminary results show that learning from examples
may outperform learning from full trajectories.
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Values are highly overestimated without penalization,
especially for OOD states.

Conclusion

VPACE enables fast RL from examples.
X Requires manual task selection.
@ Future work: apply to offline RL.
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